Statisticien et data scientist, deux métiers à ne pas confondre

7 juillet 2020

L a synonymie n’existe pas, et c’est peut-être bien là l’information fondamentale de cet article. Nous nous construisons avec l’idée que deux mots distincts peuvent avoir le même sens. Nous sommes régulièrement encouragés à éviter les répétitions par tous les moyens, quitte à utiliser un mot qui n’exprime pas tout à fait notre pensée. Nombreux sont pourtant les universitaires à répéter inlassablement que la langue française est riche et complexe, et qu’il serait absurde de créer deux mots différents ayant exactement le même sens.


Cet article a pour objectif d’expliquer pourquoi les métiers de data scientist et de statisticien ne peuvent pas être confondus ou considérés comme identiques. On parle donc de comparer un mot de la langue française et… un anglicisme. Le problème avec cette dernière catégorie, c’est qu’on se croit vite tout permis. Quand on sait en plus qu’il s’agit d’un anglicisme dont le sens est en constante évolution, on a envie de jeter le stylo (ou le clavier) et d’abandonner face à la difficulté de la tâche. Il est pourtant primordial de comprendre pourquoi le terme de data scientist a émergé et en quoi ce métier diffère des autres métiers existants, en particulier celui de statisticien.


Nous ne chercherons pas ici à comparer le champ des statistiques avec celui de la data science. Cette précision est importante car la data science n’est pas composée exclusivement de data scientists. On y trouve pêle-mêle des data engineers, des machine learning engineers, des data analysts, des products owners et même des statisticiens. C’est à s’y perdre n’est-ce pas ? On ne cherche pas non plus à comparer des outils de machine learning avec des outils statistiques. Non, il s’agit bien de traiter des différences entre deux métiers.


La première des différences est évidente : l’un de ces métiers est beaucoup plus ancien que l’autre. Les premiers statisticiens  (1)  sont apparus durant le XVIIIème siècle (Thomas Bayes pour n’en citer qu’un), avec une réelle émergence de la discipline le siècle suivant. Les termes de data science et data scientist ne sont utilisés que beaucoup plus tardivement à la fin du XXème siècle, en 1987  (2) .

Une autre différence majeure est que les compétences de recherche sont indispensables pour exercer le métier de data scientist. La première raison à cela est la diversité et la constante augmentation du nombre d’outils. Un data scientist doit être en perpétuelle montée en compétences tout en maintenant une routine de veille sur toutes les innovations du domaine. Cela est en tout point comparable à la capacité d’un chercheur à effectuer l’état de l’art de son champ de recherche à tout moment. La seconde raison justifiant la nécessité de ces compétences est la structuration même des missions des data scientists. Ces dernières peuvent démarrer à un stade où le bénéficiaire n’a pas encore défini précisément son besoin ou que sa formulation n’est pas en adéquation avec les outils disponibles.


Dire : “J’ai besoin de simuler l’ensemble de la société humaine à la maille de l’être humain” n’est pas un besoin en adéquation avec les possibilités de notre époque. C’est au data scientist d’accompagner ce dernier pour identifier les progressions possibles à l’aide des différentes sources de données voire parfois d’identifier de nouvelles sources de données que l’interlocuteur n’avait pas identifiées. Tout ce travail préliminaire est par nature absent du métier de statisticien dont le travail est d’appliquer des outils de statistiques à un problème cadré et bien défini.


Les outils du statisticien – le logiciel R étant l’un des plus connus – n’en restent pas moins inclus dans ceux du data scientist, qui doit par conséquent avoir des compétences en statistiques. La question qui vient immédiatement est celle de la nature des autres outils du data scientist. Ces derniers n’émergent pas directement du champ des statistiques mais de la théorie de l’apprentissage statistique. Vous l’aurez compris, ce sont ceux que nous regroupons habituellement dans le champ du machine learning. À la différence des outils du statisticien, les outils de machine learning ont pour objectif d’entraîner un algorithme pour prédire de futurs résult ats (3), sans nécessairement que les étapes de calcul soient interprétables. Cette approche ayant été développée conjointement avec l’augmentation de la puissance de calcul informatique, aucun de ces outils ne peut être utilisé autrement qu’avec un ordinateur. 



Une dernière grande différence entre le métier de data scientist et celui de statisticien est leur caractère pluridisciplinaire, beaucoup plus développé dans le premier cas que dans le second. Il est en effet requis pour un data scientist d’avoir une bonne connaissance d’un ou plusieurs champs disciplinaires scientifiques (physique, chimie, biologie…). Il est même de plus en plus fréquent d’étendre cette recherche de pluridisciplinarité au-delà des sciences dites “dures”, notamment du fait de l’émergence des systèmes complexes ou encore de l’éconophysique, pour n’en citer que deux. C’est d’ailleurs cette différence qui motive les entreprises à recruter des data scientists dans des domaines plus variés que le simple domaine des mathématiques ou de l’informatique.


Nous avons par cet article voulu évoquer brièvement les différences les plus importantes entre les deux métiers. Cela ne nous a pas empêché pour autant de faire ressortir les points communs qui les relient et de mettre en valeur le fait que le métier de data scientist ne pourrait exister sans l’émergence quelques siècles plus tôt du domaine des statistiques ou plus récemment de la forte augmentation de la puissance de calcul.


Gardons également à l’esprit que la Data Science tout entière est en perpétuelle évolution et qu’aucun consensus général n’existe sur sa définition. La réponse sera en effet différente que vous vous placiez dans un grand groupe ou une petite start up ou bien encore que vous vous attachiez plus à la sémantique qu’aux considérations des diverses personnes autour de vous.




(1) : Bien que l’on pourrait dater la première apparition des statistiques à l’époque des mathématiques précolombiennes, nous n’évoquerons ici que les mathématiques modernes (qui correspond au réel avènement du champ des statistiques mathématiques).

(2) :  Data Science and Its Applications, préface, Academic Press, 1995.pdf  

(3) : Il s’agit ici d’un constat global. Il existe en effet des algorithmes à la frontière entre statistique et machine learning, comme les algorithmes de clustering.

Ressources Agaetis

par David Walter 6 novembre 2025
Project Context Michelin aimed to develop a new generation of digital services based on data from connected tires. The goal was to deliver added value to truck fleet managers and maintenance centers worldwide. The challenge lay in the collection, processing, and supervision of massive sensor data, while ensuring robustness, scalability, and relevance of analytics. Objectives The main objective was to establish a technical and architectural framework to: Efficiently collect and process data from connected tires Monitor data flows and measure the impact of business use cases Create a Big Data platform ready to evolve with growing data volumes Mission Duration A long-term engagement , combining initial architectural study, implementation of monitoring systems, and ongoing support. Implementation Agaetis leveraged its Data and Cloud expertise to: Initial architecture study: Define technological and structural choices Platform monitoring: Implement monitoring principles to ensure robustness and availability Load analysis: Evaluate the impacts of various business use cases Big Data framework definition: Integrate best practices to accelerate implementation Data Science work: Perform domain-specific analysis and develop new indicators and services Results Achieved New digital services: Creation of innovative solutions for fleet managers Robust and scalable platform: A Big Data environment ready to handle massive data volumes Operational optimization: Improved traceability and KPI tracking Enhanced innovation: Data transformed into strategic levers for Michelin Key Success Factors Agaetis’ expertise in Big Data and IoT data processing End-to-end methodology: From architecture to Data Science Immersion in the client’s business environment Proactive supervision ensuring robustness and reliability  And You? Are you wondering about: Leveraging data from your connected equipment ? Creating new digital services based on Data? Implementing a robust and scalable Big Data architecture ? 👉 Contact our experts to transform your IoT data into innovative, value-generating services.
par David Walter 6 novembre 2025
Project Context France’s first research foundation dedicated to innovation in pain management aimed to launch a market-ready application resulting from its clinical research and development program. The goal was to transform the app into a Digital Therapeutic (DTx) reimbursed by the national health insurance system. Objectives The organization focuses on driving healthcare innovation through extensive collaborations with hospitals, research institutes, universities, and technology companies. The main challenges included: Transforming an application into a Digital Therapeutic (DTx) reimbursed by the national health system. Managing the transition of patients to this new platform. Preparing a new data warehouse to support scientific research. Mission Duration 3 collaborators over 3 years Methodology Agaetis provided its expertise through targeted and structured actions: Audit of existing systems: Evaluation of current infrastructure to identify needs and areas for improvement. Decision support for partner selection: Assistance in choosing competent and reliable technology partners. Technology advisory: Guidance on application architecture, security, and scalability to ensure long-term viability. Results Achieved Development of an application supporting patients in chronic pain management, progressing toward recognition as a reimbursable DTx. Rigorous technical assessment and selection of strategic partners. Adherence to roadmap milestones , ensuring steady progress and alignment with expectations. This project highlights how Agaetis leverages its technological and strategic expertise to transform challenges into innovative, effective solutions — creating tangible value for clients in the healthcare sector.
Show More