Flutter 2 vient de sortir ! Mais au fait, c'est quoi ?

20 avril 2021

Il y a un peu plus d’un mois, le 3 mars 2021, Google a annoncé la sortie de la v2 de Flutter. Ce framework de développement d’applications multi-plateformes, dont la première version est sortie en Juin 2018, est encore peu connu malgré une adoption qui ne fait qu’augmenter. Dans cet article nous allons voir ce qu’il apporte, notamment dans un contexte de développement mobile.

Quelles sont les problématiques d’aujourd’hui dans le développement mobile ?

Il existe actuellement de nombreuses manières différentes de développer des applications mobiles. Chaque solution a ses avantages et inconvénients, d’où l’apparition de nouvelles au fur et à mesure des années. Flutter s’inscrit dans cette logique et est d’ailleurs à ce titre l’une des dernières technologies disponibles. Comparons-les rapidement !

Le développement natif

L’architecture d’une application native : les API de la plateforme sont directement appelées (affichage, API hardware etc…). Les Widgets sont les composants natifs à l’affichage (liste, bouton, texte etc), rendus dans le “canvas” du mobile.

La contrainte principale du développement natif est le besoin d’avoir 2 équipes pour gérer chaque plateforme, à cause des langages différents : Java/Kotlin pour Android, Objective-C/Swift pour iOS. Chaque fonctionnalité doit donc être développée 2 fois, avec son lot de tests et donc de bugs potentiels.

À l’inverse, l’avantage principal réside dans le fait d’utiliser les technologies prévues à l’origine pour faire des applications : meilleur support et accès aux dernières fonctionnalités intégrées des systèmes d’exploitation.

Le développement natif est une bonne option dans le cas où le cœur de métier est le mobile et lorsque la performance est la priorité absolue. Dans les autres cas, il peut être intéressant de se tourner vers une autre solution.

Les apps hybrides WebView (Cordova, Ionic...)

L’application hybride est écrite en HTML + JavaScript et utilise l’affichage des pages web du mobile. Elle communique avec l’hardware à travers le “pont” du framework.

Ces applications sont en réalité des vues web en HTML, rendues par le mobile, de la même manière qu’un navigateur. Elles utilisent un service fourni par le framework pour faire le pont avec les services bas niveau du téléphone (caméra, audio, position, bluetooth etc). 
L’avantage principal est évidemment l’utilisation des technologies du Web : échelle de popularité différente, langage interprété permettant le hot reloading et partage de la même base de code pour les deux plateformes. Mais tout cela au prix de performances bien plus réduites qu’en développement mobile natif, puisque l’on passe ici par une Webview à l’affichage.

Les Progressive Web Apps

Cette technologie là est un peu différente. En réalité ce n’est qu’un site Web installable affiché à travers un navigateur, mais ce dernier cachant son interface pour donner l’impression d’une application normale. Les performances sont évidemment encore moins bonnes que les Webviews et le support des API hardware est implémenté à travers les navigateurs (sur iOS/Safari notamment il en manque quelques unes).

L’utilisation prévue n’est pas la même : ici cela sera plutôt pour pouvoir accéder à une application Web à travers une icône installable sur n’importe quelle machine. Vous pouvez trouver plus d’informations sur cette technologie dans notre article sur les PWA.

Les apps React Native

L’application React Native est aussi développée avec les technologies du Web mais gère son propre affichage, en embarquant l’interpréteur JavaScript. Elle communique avec la plateforme entière à travers le pont du framework.

Apparu pour répondre aux problématiques des Webviews, c’est une solution “entre deux” : on code une vraie application en JavaScript qui utilise les vrais composants graphiques natifs, et un “bridge” relie ce monde avec celui de la plateforme native.

Vous pouvez lire notre article consacré à React Native pour plus de détails. Les performances sont meilleures que les WebView mais restent notablement inférieures aux applications natives, principalement au moment du démarrage, lorsque l’interpréteur JavaScript est lancé et les composants d’UI sont transpilés en composants natifs.

Flutter est heureusement la solution à toutes ces problématiques !

Flutter est différent, mais en quoi ?

Une application sous cette technologie, développée en Dart, gère son propre affichage et n’a pas besoin de passer par un pont de communication avec le monde natif.

Apparu en 2017 et officialisé mi-2018, Flutter se veut être la solution aux problématiques vues jusqu’ici : partage du code entre les plateformes sans que cela se fasse aux dépens des performances. 


Pour ce faire, comme nous le voyons sur le schéma, Flutter n’a besoin que du canvas de la plateforme native pour afficher ses propres widgets de rendus de l’UI, l’application n’utilise en effet pas ceux de la plateforme native. Elle a de même besoin d’un accès aux services hardware. Tout le reste est géré par le framework, sans besoin de “Bridge” de conversion.


“Tout est un Widget” est l’idée centrale de cette technologie, car ils composent l’UI : à la manière de React, chacun peut être imbriqué dans un autre selon le besoin ou être personnalisé à l’envie sans pertes de performances.

Qu'est-ce qu'un widget ?

Les widgets sont des “unités de vue” : ils décrivent un affichage et un comportement (bouton cliquable par exemple). Une action donnée peut changer leur état et ainsi changer l’affichage de l’interface.

 Les  Widgets Flutter sont fournis avec le framework  et ne sont pas convertis en composants natifs, c’est la différence majeure avec React Native.
Puisqu’ils sont fournis avec Flutter et ne sont pas uniques selon la plateforme (Android, iOS…) il n’y a pas de problèmes de compatibilité, un des soucis parfois rencontrés avec React Native où il arrive de faire du code spécifique.

Différents exemples de widgets ( source )

Qu'est-ce que le Dart ?

Langage créé par Google en 2011, il a la particularité principale de pouvoir être compilé vers la plupart des langages machine ou transpilé en JavaScript. Ainsi, tout comme ce dernier qui est interprété, le Dart permet la même puissance de développement (hot reloading etc), mais avec les avantages en production d’un langage compilé (performances). Le meilleur des deux mondes. 
Le langage est assez proche de JavaScript dans sa syntaxe et est de la même manière 
mono-thread , ainsi que de nature asynchrone (avec notamment l’utilisation des mots-clés “async” et “await”).

Du code Dart peut être compilé vers toutes ces architectures processeur ou transpilé vers du JavaScript ( source ).

Dart connaît une popularité croissante depuis quelques années, à noter que Google l’utilise pour créer leur nouvel OS “ Fushia ”, dont le but à terme pourrait être de remplacer Android.



Avantages/Inconvénients par rapport aux autres solutions

Puisque Flutter n’a pas besoin d’utiliser un “pont JavaScript”, on revient à un temps de démarrage très proche des applications natives. De la même manière les performances globales sont bien meilleures, grâce aussi au fait que Dart peut être compilé en AOT en code natif. 

Ce dernier propose également un compilateur JIT, pour permettre une expérience de développement optimale avec le hot reload, similaire aux apps JavaScript.


Enfin, on note que Flutter dispose d’une solution CI/CD supportée par Google, alors que dans toutes les autres technologies vues dans cet article il faut utiliser des solutions externes comme  Bitrise , si on le souhaite.


Au niveau inconvénients, il faut évidemment apprendre un nouveau langage, le Dart, qui n’a pas la popularité de JavaScript ou Java. Par ailleurs, les widgets peuvent être difficiles à appréhender au début, ça peut être comparable à une transition d’Angular vers React. Ce sont les rares inconvénients de Flutter ! Bien entendu les performances restent distinguables de celles du natif mais l’écart est maintenant quasi invisible pour la plupart des utilisations. 

L’écosystème du développement mobile ne s’y méprend pas : Flutter semble en effet avoir dépassé React Native en popularité vers mi-2020 (Google trends). 

Les nouveautés de Flutter 2

Un résumé des nouveautés de la 2ème version ( source )

Cette mise à jour comprend principalement la sortie du web stable. De la même manière que React Native, ce framework originellement conçu pour créer des applications mobiles permet maintenant de faire des applications Web. 


À terme, l’idée est de pouvoir concevoir des applications lourdes sous Windows, MacOS ou encore Linux, en plus des applications mobiles et Web, avec le même code. React Native a le même objectif, et les deux technologies semblent aller dans la bonne direction pour résoudre toutes les problématiques induites.



Conclusion

Flutter semble à la hauteur de ses promesses, alors qu’il n’a même pas encore 3 ans derrière lui. Ça ne présage que de bonnes choses pour l’avenir du développement mobile, mais aussi du développement multiplateforme de manière générale. On termine sur un benchmark pour voir concrètement les différences de performances. Voilà un  rapide benchmark publié sur Medium  où le natif, React Native et Flutter sont comparés sur un défilement d’images dans une liste.

Le constat est donc sans appel !

Ressources Agaetis

4 septembre 2025
Le contexte du projet : Un prototype de stylo connecté destiné au secteur de la santé avait rencontré un vif succès auprès du marché. Face à une demande croissante, le client devait passer à une phase d’ industrialisation afin de répondre aux attentes tout en respectant les réglementations strictes en matière de données de santé ( Hébergement de Données de Santé – HDS ). L’objectifs : L’objectif principal était de transformer un prototype en solution industrialisée en : définissant les critères de sélection et les options technologiques, garantissant la conformité aux réglementations de santé, et assurant la montée en charge (scale-up) pour répondre à la demande croissante. Durée de mission : Mission en plusieurs phases : cadrage, tests techniques, mise en conformité et accompagnement au scale-up industriel. Mise en œuvre : Agaetis a déployé une approche complète combinant expertise IoT et réglementaire : Définition des critères de sélection : cadrage des besoins fonctionnels et techniques. Évaluation technologique : étude des solutions potentielles et tests de leur adéquation. Mise en conformité HDS : accompagnement dans la sélection de l’hébergement et structuration du modèle de données. Développement et industrialisation : assistance dans l’implémentation des composants techniques et préparation à la montée en charge. Résultats obtenus : Accélération de la production : industrialisation réussie permettant de répondre rapidement à la demande. Conformité assurée : solution alignée sur les exigences HDS et réglementations de santé. Innovation valorisée : passage du prototype au produit commercialisable sur le marché santé. Flexibilité opérationnelle : architecture et modèle de données prêts à évoluer avec les usages. Facteurs clés de succès : Expertise pointue en IoT santé et données réglementées . Approche sur mesure intégrant la dimension technique et humaine. Collaboration rapprochée avec les équipes du client. Vision orientée impact concret et mise sur le marché rapide. Et vous ? Vous vous interrogez sur : l’industrialisation de vos prototypes IoT santé, la conformité réglementaire (HDS, ISO, etc.) de vos solutions, ou la préparation de vos innovations pour passer du prototype au scale-up industriel ? 👉 Contactez nos experts pour transformer vos prototypes IoT en solutions santé industrialisées et conformes.
par David Walter 4 septembre 2025
Le contexte du projet : Groupe Aérospatial souhaitait optimiser le temps de contrôle dimensionnel des réservoirs de son lanceur spatial. Les méthodes traditionnelles, longues et peu satisfaisantes, ralentissaient la production et augmentaient les risques d’erreurs. Le besoin était de développer une application de contrôle qualité et dimensionnel intégrant de nouveaux moyens de mesure plus rapides et précis. L’objectifs : L’objectif principal était de concevoir et déployer une application installée sur un PC concentrateur capable de : lancer différents programmes de contrôle dimensionnel, intégrer des technologies de mesure avancées (profilomètres lasers, trackers laser), et améliorer la précision et la répétabilité des contrôles. Durée de mission : Mission de plusieurs mois, de la conception logicielle à la formation des équipes, en passant par l’intégration et les tests. Mise en œuvre : Agaetis a déployé une approche technique et collaborative : Développement de l’application : architecture logicielle adaptée aux besoins d’intégration industrielle. Collecte et traitement des données : intégration des mesures issues des machines à commande numérique, trackers laser et profilomètres. Optimisation des processus : automatisation des contrôles pour gagner en rapidité et réduire les erreurs. Accompagnement & formation : transfert de compétences aux équipes internes pour assurer la continuité. Résultats obtenus : Temps de contrôle réduit : amélioration notable de la productivité. Précision accrue : fiabilisation des mesures grâce à l’intégration de nouvelles technologies. Réduction des erreurs : contrôles plus rapides et répétables. Compétences préservées : maintien de la connaissance technique dans l’organisation. Facteurs clés de succès : Expertise technique d’Agaetis en développement industriel et IoT . Grande flexibilité dans la collaboration avec le client. Intégration fluide des données issues de différents équipements. Approche orientée impact et résultats mesurables. Et vous ? Vous vous interrogez sur : l’optimisation de vos processus de contrôle industriel, l’intégration de nouvelles technologies de mesure, ou la digitalisation de vos applications qualité ? 👉 Contactez nos experts pour moderniser vos contrôles industriels et accroître votre performance opérationnelle.
Show More