Data Science, développement et algorithme génétique

3 novembre 2021

Suite à une mission avec une équipe de chercheurs de Sigma Clermont, destiné à aider à la prise de décision dans le domaine de l’usinage de portes d’avions, les membres de l’équipe Agaetis mobilisée sur ce projet ont accepté de répondre à quelques questions afin de mieux comprendre ce projet du point de vue interne.

Ils nous expliquent plus en détail ce qu’est un algorithme génétique, ses intérêts dans le domaine de l’optimisation des usinages et les objectifs fixés pour ce projet ! 

Le challenge de cette mission était de partir des éléments de thèse, fournissant, notamment, le code de calcul pour les transformer en une application fonctionnelle. Notre objectif n’était pas de réinventer la roue, mais de retranscrire la vision du client, fruit d’un temps long de recherche et de développement, en un outil de calcul performant, robuste, documenté et compréhensible.

Les algorithmes génétiques

Pour commencer, pouvez-vous nous dire ce qu’est un algorithme génétique ? 

Un algorithme génétique est un algorithme inspiré de la théorie de l’évolution de Darwin, qui peut être utilisé pour obtenir une solution approchée d’un problème d’optimisation sous contraintes.

Un des avantages de l’algorithme génétique, par rapport aux historiques  méthodes du simplexe et du simplexe révisé , est le temps de calcul inférieur pour avoir une solution approchée de la solution optimale. Une des limites de cet algorithme est que s’agissant d’une heuristique, nous ne sommes pas certain de l’optimalité de la solution proposée.

Pouvez-vous nous expliquer comment ces algorithmes fonctionnent et comment ils peuvent aider le monde industriel ?

Le principe général d’un algorithme génétique est de générer un certain nombre de fois, un certain nombre d’individus représentant chacun une solution du problème d’optimisation que l’on souhaite résoudre. Ils seront sélectionnés selon différents critères pour déterminer les individus les plus performants, qui transmettront ainsi leurs « gènes » à la génération suivante. 

Au bout d’un certain nombre de générations, on sélectionne l’individu le plus adapté de la dernière génération, ce qui donne la solution approchée au problème d’optimisation.

Pour cela on effectue plusieurs étapes itératives :

Génération d’une population N → Croisement → Mutation → Population Intermédiaire → Sélection → Population N+1 → …

Explications : 


Pour générer la population initiale :

La population représente l’ensemble d’individus, c’est l’ensemble de « gènes » qui constitue une solution au problème d’optimisation.

Le gène est la valeur prise par une variable du problème pour un individu donné.

Au départ, on génère aléatoirement les individus de la première génération de manière à respecter les contraintes du problème d’optimisation. On sélectionne ensuite un certain nombre d’individus sur lesquels on va réaliser un croisement.

Le croisement :

Parmi les individus sélectionnés pour le croisement, on va créer des couples d’individus et l’on va échanger un certain nombre de gènes entre chaque individu de chaque couple pour donner 2 individus « enfants » par couple. Donc avec N individus « parents » on obtient N individus « enfants », sur lesquels on va appliquer l’étape de mutation.

La mutation :

L es individus enfants vont passer par une étape de mutation qui consiste à appliquer une légère modification à un ou plusieurs gènes des individus enfants.

Les mutations sont là pour éviter que l’algorithme génétique ne converge trop prématurément vers une solution, et éviter que la population n’atteigne des solutions dans un optimum local plutôt que dans un optimum global.

L’addition des individus présents avant les étapes de croisement et de mutation avec la population d’enfants forme une population intermédiaire sur laquelle il va être réalisé une étape de sélection pour garder les individus les plus performants, c’est-à-dire ceux qui optimisent le mieux le problème.

La sélection :

L’étape de la sélection consiste à appliquer à chaque individu une fonction d’évaluation des performances, leur donnant ainsi un score, et ensuite à trier ces individus par score décroissant pour sélectionner les N premiers individus (N étant la taille de la population initiale). 

Nous gardons ainsi les individus les plus performants, ce qui générations après générations va permettre d’améliorer la performance globale de la population, et ainsi de se rapprocher d’un optimum global. 

La sélection de la solution retenue à la dernière génération :

Après un certain nombre d’itérations défini au lancement de l’algo rithme, on réalise une dernière étape de sélection qui consiste soit à prendre le meilleur individu selon la fonction d’évaluation des performances, soit à appliquer une fonction d’évaluation spécifique à la dernière génération.

Bien que l’on n’ait aucune certitude sur l’optimalité de la solution obtenue, en général les temps de calcul pour obtenir une solution en passant par un algorithme génétique sont bien moindre qu’en passant par un solveur simplexe qui assure l’optimalité de la solution.

Projet en partenariat avec SIGMA Clermont

Quel a été le rôle de chacun dans ce projet ? 

Bertrand et S ylvain ont d’abord lu et analysé la thèse rédigée par le doctorant de Sigma, puis ont interprété le code MATLAB pour le retranscrire, le corriger et le développer en Python. Le but étant d’industrialiser cet outil issu d’une thèse, il a fallu s’adapter et être flexible. 

Ils ont ensuite fait le lien avec le front/back end géré par une autre équipe, Arnaud et Alexandre, qui se sont occupés de l’architecture globale et de l’intégration de l’algorithme au sein de la solution. 

À retenir

Que retenez-vous de ce projet ?

C es deux domaines ne sont pas forcément habituels pour nous, les apports sont donc multiples.

Travailler dans de nouveaux secteurs comme l’aéronautique et échanger des compétences et des connaissances est toujours très enrichissant pour nous. Cela permet d’élargir notre portfolio et de monter rapidement en compétences sur des métiers très différents — c’est d’ailleurs ce qui fait notre force. 

De plus, les algorithmes génétiques étant utilisés dans beaucoup d’applications, cela a été pour nous l’occasion de tester notre expertise et de nous challenger, chose que l’on apprécie tout particulièrement chez Agaetis. C’était également valorisant de pouvoir appliquer et travailler sur des algorithmes génétiques visant une utilisation concrète.

Cette expérience nous a aussi permis de travailler sur la rigueur des livrables, en reprenant les éléments orientés R&D fournis et en les transformant en une application fonctionnelle. Les équipes de Sigma étaient à l’écoute, disponibles pour les différentes itérations, et nous ont également aidé à fournir une solution sur-mesure ! 

C’était intéressant de pouvoir mélanger les mondes du développement, de la data science et de la recherche, ce n’est pas si courant. Cette mission nous a aussi confirmé que ces différents secteurs métiers peuvent travailler ensemble, et s’il faut retenir quelque chose de ce projet c’est bien ça !



Si vous n’avez pas lu le premier article concernant ce projet :  Comment améliorer les temps d’usinage et l’optimisation des conditions de coupes , n’hésitez pas à aller le consulter pour mieux comprendre et avoir la vision client de cette mission ! 

Ressources Agaetis

par David Walter 6 novembre 2025
Project Context Michelin aimed to develop a new generation of digital services based on data from connected tires. The goal was to deliver added value to truck fleet managers and maintenance centers worldwide. The challenge lay in the collection, processing, and supervision of massive sensor data, while ensuring robustness, scalability, and relevance of analytics. Objectives The main objective was to establish a technical and architectural framework to: Efficiently collect and process data from connected tires Monitor data flows and measure the impact of business use cases Create a Big Data platform ready to evolve with growing data volumes Mission Duration A long-term engagement , combining initial architectural study, implementation of monitoring systems, and ongoing support. Implementation Agaetis leveraged its Data and Cloud expertise to: Initial architecture study: Define technological and structural choices Platform monitoring: Implement monitoring principles to ensure robustness and availability Load analysis: Evaluate the impacts of various business use cases Big Data framework definition: Integrate best practices to accelerate implementation Data Science work: Perform domain-specific analysis and develop new indicators and services Results Achieved New digital services: Creation of innovative solutions for fleet managers Robust and scalable platform: A Big Data environment ready to handle massive data volumes Operational optimization: Improved traceability and KPI tracking Enhanced innovation: Data transformed into strategic levers for Michelin Key Success Factors Agaetis’ expertise in Big Data and IoT data processing End-to-end methodology: From architecture to Data Science Immersion in the client’s business environment Proactive supervision ensuring robustness and reliability  And You? Are you wondering about: Leveraging data from your connected equipment ? Creating new digital services based on Data? Implementing a robust and scalable Big Data architecture ? 👉 Contact our experts to transform your IoT data into innovative, value-generating services.
par David Walter 6 novembre 2025
Project Context France’s first research foundation dedicated to innovation in pain management aimed to launch a market-ready application resulting from its clinical research and development program. The goal was to transform the app into a Digital Therapeutic (DTx) reimbursed by the national health insurance system. Objectives The organization focuses on driving healthcare innovation through extensive collaborations with hospitals, research institutes, universities, and technology companies. The main challenges included: Transforming an application into a Digital Therapeutic (DTx) reimbursed by the national health system. Managing the transition of patients to this new platform. Preparing a new data warehouse to support scientific research. Mission Duration 3 collaborators over 3 years Methodology Agaetis provided its expertise through targeted and structured actions: Audit of existing systems: Evaluation of current infrastructure to identify needs and areas for improvement. Decision support for partner selection: Assistance in choosing competent and reliable technology partners. Technology advisory: Guidance on application architecture, security, and scalability to ensure long-term viability. Results Achieved Development of an application supporting patients in chronic pain management, progressing toward recognition as a reimbursable DTx. Rigorous technical assessment and selection of strategic partners. Adherence to roadmap milestones , ensuring steady progress and alignment with expectations. This project highlights how Agaetis leverages its technological and strategic expertise to transform challenges into innovative, effective solutions — creating tangible value for clients in the healthcare sector.
Show More